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Abstract. We give a simple algorithm to compute the topological pressure for the Julia 
sets J of hyperbolic rational endomorphism. This allows us to compute the spectra of the 
generalised dimensions and entropies with respect to the whole class of Gibbs measures 
on J. 

In recent literature some methods of computing the fractal properties of hyperbolic 
Julia sets have been given. These methods divide into two classes: in the first the 
various dimensions of the set are computed with covering procedures (box-counting) 
[ l ]  or the escape rates are estimated toward different stable fixed points (final-state 
sensitivity) [2]. In the second class the Julia set is analysed by means of symbolic 
dynamics and the fractal indices arise from a thermodynamical description of the 
asymptotic distribution of the orbit on the invariant set [3-61. In this letter we follow 
this second approach and show a simple but powerful technique to compute the fractal 
indices with respect to the uncountable set of the Gibbs measures. Our method seems 
to be much more simple, general and direct than the one proposed in [3] and is highly 
accurate. Before proceeding, we want to remark that all the following considerations 
apply not only to hyperbolic Julia sets (i.e. the critical points do not affect the set), 
but more generally to conformal mixing repellers (see [7] for the definitions and [%lo] 
for a few applications). 

We denote with J the Julia set of the rational endomorphism T [ l l ] ;  with llDxTll 
the norm of the tangent map of T at x and p., a T-ergodic measure supported by J 
and indexed with U E R. The starting point of our considerations is the existence, for 
any v E R, of the limit [ 121: 

x is any non-excluded [ll.] point of the complex plane; h ( p )  and A(p)  denote 
respectively the Kolmogorov entropy and the unique Lyapunov exponent of the 
measure p, and p, is the unique ‘Gibbs’ measure for which the equality in (1) holds 
[13]. P(u) is called the pressure of the function -U logllDxTII [13] and three values 
of U have been particularly considered. When u=O, the corresponding measure po 
is the maximal entropy measure of T: h(po)  is the topological entropy [13]. When 
U = 1 or 2, according to J extending on the line or in the plane, p, is called the 
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Sinai-Bowen-Ruelle measure, since the pressure equals the escape rate [8, 141. Finally, 
when a = dH where dH denotes the HausdorfT dimension of J, we have the well known 
Bowen-Ruelle formula: P ( D H )  = h(p%) - DHA (ph)  = 0 [7]. 

The pressure can also be expressed as the thermodynamical limit of a partition 
function, as [ 15,8]: 

where IAZI is the diameter of the a th  atom A: E d", and d" = Vj"=oT-"do, do being 
a generating closed partition of J. Now we choose a Markov partition [13] do of J 
(see [8] and [9] for the motivation of this choice) and introduce the dynamical free 
energy [ 161: 

The generalised dimensions [9,17] and the generalised Renyi entropies [l8], can be 
defined in terms of the free energy. We stress the fact that they depend on the Gibbs 
measure on J. Before showing this, we relate the free energy to the pressure. The 
central step is the scaling of the Gibbs measure of an atom A: E d" [12]: 

Using this scaling in (3) and by asymptotic uniformity consideration we can prove 
that [ 5 ,  lo]: 

F(q,  7; pu) = - q P ( a )  + P ( o q  - 7). ( 5 )  

The generalised dimensions with respect to p,, Dq(pu) ,  are now defined by demanding 
that, for fixed q, the free energy must be zero. This uniquely defines a function T: via: 

(6) P (  aq - T;) = qP( a)  

and the dimensions are: 

The generalised Renyi entropies hq(pu) are obtained putting T = 0 in (3) and dividing 
by (1 - q ) ,  i.e. 

hq(Pu)(l - 9 )  = F(q, 0; pu) = -qP(a)  + P ( a q ) .  (8) 

The relations (7) and (8) have been recently obtained also in [19]. All the quantities 
given by (7) and (8) can be computed if the pressure is known and it can be estimated 
by means of the series (1). Another simple and accurate method to calculate the 
pressure only for disconnected repellers, has been proposed in [4]. 

In figure l (a )  and ( b ) ,  we show respectively Dq(p , )  and h4(p,)  against a for the 
Julia set generated by the map z '=  z2-0.15 ( J  is connected). 

In figure 2 we show the same quantities for the map z' = z2 - 3 ( J  is a disconnected 
set on the real line). It could seem that the previous method could be applied to any 
hyperbolic rational endomorphism. 
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Figure 1. (a) For the map z ' =  z2-0.15 the generalised dimensions D q ( ~ , )  corresponding 
to the Gibbs measure gr are plotted against U for two values of q. ( b )  The same for the 
generalised Renyi entropies hq(p,). 

Although the convergence of (1) is true, and rather fast for the above examples, 
the rate of convergence of (l/n)Pfl(a), where 

is very slow and affected by exponentially decaying oscillations, when the Julia set is 
highly irregular. The oscillations in the pressure reflect in the computation of the 
generalised dimensions and this effect has been observed also in the calculation of the 
generalised dimensions for the Henon attractor using the box-counting technique [20]. 
These oscillations are related to the fact that the Julia set is strictly non-self-similar. 
In fact, let us consider a disconnected Julia set J and let us suppose that the Markov 
partition do of J consists of r rectangles, and put for simplicity diam J = IJI = 1. Then 
define the scales A:,@ = ~ A ~ ~ / ~ A ~ - * ~ ,  which give the rate of dissection at the n-level, 
and suppose that the belong to the same set A for any n > 0. Thus A = 
{AY1 i = 1,. . . , r }  and any is the product of a sequence of s"+' elements belonging 
to A (s is the degree of the mapping T), and these sequences are in a one-to-one 
correspondence with the /A: I. We call strictly self-similar the invariant fractal which 
obeys this condition. But now it is easy to verify in (2) that for any finite n: 
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Figure 2. ( a )  For the map z '=  z2-3 the generalised dimensions Dq(p,)  corresponding to 
the Gibbs measure p, are plotted against U for two values of q. (b)  The same for the 
generalised Renyi entropies hq(p,). 

and since (2) is boundedly equivalent to ( l ) ,  the oscillations in the pressure are absent. 
For example, this is the case for the piecewise linear expanding maps. If the rates of 
dissection of the scales are not uniform, the oscillations can appear. 

In [ 5 ]  we have extended the same techniques to the computation of the scaling 
function f ( a )  [17] and of the generalised Lyapunov exponents [9,21]. 

One of the authors (SV) has been supported, during this work, by a CNR-NATO 
fellowship. 
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